Наш ДзенМой аккаунтПоделись ссылкойВход / РегистрацияУдалить из закладокПоиск по сайтуДобавить в закладкиМои закладки

Выбор защит линии 110 кв

3.2.106. Для линий в сетях 110-500 кВ с эффективно заземленной нейтралью должны быть предусмотрены устройства релейной защиты от многофазных замыканий и от замыканий на землю. ¶

3.2.107. Защиты должны быть оборудованы устройствами, блокирующими их действие при качаниях, если в сети возможны качания или асинхронный ход, при которых вероятны излишние срабатывания защиты. Допускается выполнение защиты без блокирующих устройств, если она отстроена от качаний по времени (около 1,5-2 с). ¶

3.2.108. Для линий 330 кВ и выше в качестве основной должна быть предусмотрена защита, действующая без замедления при КЗ в любой точке защищаемого участка. ¶

Для линий напряжением 110-220 кВ вопрос о типе основной защиты, в том числе о необходимости применения защиты, действующей без замедления при КЗ в любой точке защищаемого участка, должен решаться в первую очередь с учетом требования сохранения устойчивости работы энергосистемы. При этом, если по расчетам устойчивости работы энергосистемы не предъявляются другие, более жесткие требования, может быть принято, что указанное требование, как правило, удовлетворяется, когда трехфазные КЗ, при которых остаточное напряжение на шинах электростанций и подстанций ниже 0,6-0,7 Uном, отключаются без выдержки времени. Меньшее значение остаточного напряжения (0,6 Uном) может быть допущено для линий 110 кВ, менее ответственных линий 220 кВ (в сильно разветвленных сетях, где питание потребителей надежно обеспечивается с нескольких сторон), а также для более ответственных линий 220 кВ в случаях, когда рассматриваемое КЗ не приводит к значительному сбросу нагрузки. ¶

При выборе типа защит, устанавливаемых на линиях 110-220 кВ, кроме требования сохранения устойчивости работы энергосистемы должно быть учтено следующее: ¶

1. На линиях 110 кВ и выше, отходящих от АЭС, а также на всех элементах прилегающей сети, на которых при многофазных КЗ остаточное напряжение прямой последовательности на стороне высшего напряжения блоков АЭС может снижаться более чем до 0,45 номинального, следует обеспечивать резервирование быстродействующих защит с выдержкой времени, не превышающей 1,5 с с учетом действия УРОВ. ¶

2. Повреждения, отключение которых с выдержкой времени может привести к нарушению работы ответственных потребителей, должны отключаться без выдержки времени (например, повреждения, при которых остаточное напряжение на шинах электростанций и подстанций будет ниже 0,6 Uном, если отключение их с выдержкой времени может привести к саморазгрузке вследствие лавины напряжения, или повреждения с остаточным напряжением 0,6 Uном и более, если отключение их с выдержкой времени может привести к нарушению технологии). ¶

3. При необходимости осуществления быстродействующего АПВ на линии должна быть установлена быстродействующая защита, обеспечивающая отключение поврежденной линии без выдержки времени с обеих сторон. ¶

4. При отключении с выдержкой времени повреждений с токами, в несколько раз превосходящими номинальный, возможен недопустимый перегрев проводников. ¶

Допускается применение быстродействующих защит в сложных сетях и при отсутствии изложенных выше условий, если это необходимо для обеспечения селективности. ¶

3.2.109. При оценке обеспечения требований устойчивости, исходя из значений остаточного напряжения по 3.2.108, необходимо руководствоваться следующим: ¶

1. Для одиночной связи между электростанциями или энергосистемами указанное в 3.2.108 остаточное напряжение должно быть проверено на шинах подстанций и электростанций, входящих в данную связь, при КЗ на линиях, отходящих от этих шин, кроме линий, образующих связь; для одиночной связи, содержащей часть участков с параллельными линиями, — также при КЗ на каждой из этих параллельных линии. ¶

2. При наличии нескольких связей между электростанциями или энергосистемами указанное в 3.2.108 значение остаточного напряжения должно быть проверено на шинах только тех подстанций или электростанций, где соединяются эти связи, при КЗ на связях и на других линиях, питающихся от этих шин, а также на линиях, питающихся от шин подстанций связей. ¶

3. Остаточное напряжение должно быть проверено при КЗ в конце зоны, охватываемой первой ступенью защиты в режиме каскадного отключения повреждения, т. е. после отключения выключателя с противоположного конца линии защитой без выдержки времени. ¶

Для линий в сетях 110-500 кВ с эффективно заземленной нейтралью должны быть предусмотрены устройства релейной защиты от многофазных замыканий и от замыканий на землю.

3.2.107

Защиты должны быть оборудованы устройствами, блокирующими их действие при качаниях, если в сети возможны качания или асинхронный ход, при которых вероятны излишние срабатывания защиты. Допускается выполнение защиты без блокирующих устройств, если она отстроена от качаний по времени (около 1,5-2 с).

При оценке обеспечения требований устойчивости, исходя из значений остаточного напряжения по 3.2.108, необходимо руководствоваться следующим:

1. Для одиночной связи между электростанциями или энергосистемами указанное в 3.2.108 остаточное напряжение должно быть проверено на шинах подстанций и электростанций, входящих в данную связь, при КЗ на линиях, отходящих от этих шин, кроме линий, образующих связь; для одиночной связи, содержащей часть участков с параллельными линиями, — также при КЗ на каждой из этих параллельных линии.

2. При наличии нескольких связей между электростанциями или энергосистемами указанное в 3.2.108 значение остаточного напряжения должно быть проверено на шинах только тех подстанций или электростанций, где соединяются эти связи, при КЗ на связях и на других линиях, питающихся от этих шин, а также на линиях, питающихся от шин подстанций связей.

3. Остаточное напряжение должно быть проверено при КЗ в конце зоны, охватываемой первой ступенью защиты в режиме каскадного отключения повреждения, т. е. после отключения выключателя с противоположного конца линии защитой без выдержки времени.

В качестве основной защиты от многофазных замыканий на приемном конце головных участков кольцевой сети с одной точкой питания рекомендуется применять одноступенчатую токовую направленную защиту; на других одиночных линиях (преимущественно 110 кВ) допускается в отдельных случаях применять ступенчатые токовые защиты или ступенчатую защиту тока и напряжения, выполняя их в случае необходимости направленными. Защиту следует устанавливать, как правило, только с тех сторон, откуда может быть подано питание.

На параллельных линиях, имеющих питание с двух или более сторон, а также на питающем конце параллельных линий с односторонним питанием могут быть использованы те же защиты, что и на соответствующих одиночных линиях (см. 3.2.110 и 3.2.111).

Для ускорения отключения замыканий на землю, а в отдельных случаях и замыканий между фазами на линиях с двусторонним питанием может быть применена дополнительная защита с контролем направления мощности в параллельной линии. Эта защита может быть выполнена в виде отдельной поперечной токовой защиты (с включением реле на ток нулевой последовательности или на фазные токи) или только в виде цепи ускорения установленных защит (токовой нулевой последовательности, максимальной токовой, дистанционной и т. п.) с контролем направления мощности в параллельных линиях.

С целью повышения чувствительности защиты нулевой последовательности допускается предусматривать выведение из работы отдельных ее ступеней при отключении выключателя параллельной линии.

На приемном конце двух параллельных линий с односторонним питанием, как правило, должна быть предусмотрена поперечная дифференциальная направленная защита.

Если защита по 3.2.113 не удовлетворяет требованиям быстродействия (см. 3.2.108), в качестве основной защиты (при работе двух параллельных линий) на питающем конце двух параллельных линий 110-220 кВ с односторонним питанием и на двух параллельных линиях 110 кВ с двусторонним питанием преимущественно в распределительных сетях может быть применена поперечная дифференциальная направленная защита.

При этом в режиме работы одной линии, а также в качестве резервной при работе двух линий используется защита по 3.2.110 и 3.2.111. Допускается включение этой защиты или отдельных ее ступеней на сумму токов обеих линий (например, последней ступени токовой защиты нулевой последовательности) с целью повышения ее чувствительности к повреждениям на смежных элементах.

Допускается использование поперечной дифференциальной направленной защиты в дополнение к ступенчатым токовым защитам параллельных линий 110 кВ для уменьшения времени отключения повреждения на защищаемых линиях в случаях, когда по условиям быстродействия (см. 3.2.108) ее использование не является обязательным.

В соответствии с требованиями ПУЭ объем устройств релейной защиты ЛЭП определяется уровнем номинального напряжения.

Линии 110 кВ и выше выполняются с заземленной нейтралью. Для линии 110-500 кВ должны быть предусмотрены устройства релейной защиты от многофазных и от однофазных замыканий на землю.

Для защиты от многофазных замыканий устанавливают дистанционную защиту, а в качестве резервной устанавливают ТО.

Защита от ОЗЗ выполняется с использованием трансформатора тока нулевой последовательности и действует от емкостного тока на сигнал.

ПУЭ 7. Правила устройства электроустановок. Издание 7

  • Неизолированные провода и грозозащитные тросы ВЛ 110-1150 кВ
  • Оптимизация гирлянд изоляторов ВЛ сверхвысокого напряжения
  • Защита и автоматика силовых трансформаторов и линий для подстанций 110-220 кВ на базе Диамант
  • Исследование тороидальных экранов для натяжных гирлянд ВЛ
  • Защита трансформаторов 35-220 кВ

Возможны два подхода к выбору уставок токовых защит от междуфазных КЗ на радиальных ВЛ 35–110 кВ.

При классическом подходе первая ступень защиты – токовая отсечка – отстраивается от максимального тока КЗ в конце линии, что обеспечивает ее недействие (селективность несрабатывания) при КЗ в одном из трансформаторов двухтрансформаторной подстанции. Вторая ступень токовой защиты – отсечка с выдержкой времени – отстраивается от КЗ на шинах среднего (СН) или низшего напряжения (НН) подстанции, присоединенной к ВЛ, в зависимости от соотношения Uк,ВС и Uк,ВН в случае трехобмоточного трансформатора. При Uк,ВС Uк,ВН ток КЗ, приведенный к ступени трансформации (ВН) 110 кВ, будет больше на стороне СН, поэтому вторая ступень токовой защиты от многофазных КЗ должна отстраиваться от максимального тока КЗ на стороне СН, и наоборот, если Uк,ВН Uк,ВС. Последняя (третья) ступень токовой защиты от многофазных КЗ – МТЗ – отстраивается от максимального тока нагрузки.

При альтернативном подходе первая ступень токовой защиты – отсечка без выдержки времени – отстраивается от КЗ на шинах СН или НН приемной подстанции в зависимости от соотношения Uк,ВС и Uк,ВН и выполняется без выдержки времени. Параметр срабатывания второй ступени токовой защиты выбирается по условию согласования с защитой шин в виде токовой отсечки, в том числе неполной дифференциальной защитой шин (ДЗШ), а при ее отсутствии – с самой грубой отсечкой на отходящих ВЛ (КЛ) от шин СН(НН) при Uк,ВС Uк,ВН (Uк,ВН Uк,ВС). Выбор уставок третьей ступени осуществляется аналогично.

При таком подходе к выбору параметров срабатывания токовой защиты первая ступень защиты может сработать при КЗ в трансформаторе. Неселективное действие первой ступени защиты будет исправляться действием АПВ, что вполне допустимо для потребителя III категории надежности электроснабжения [1], какой предполагается при данной схеме электроснабжения (радиальная линия). Вторая ступень (отсечка с выдержкой времени), выбранная по принципу согласования с токовой отсечкой (ТО), установленной на вводе (отходящих линиях) стороны СН(НН), будет иметь, скорее всего, нормативный коэффициент чувствительности при КЗ в минимальном режиме, но несколько большую задержку на срабатывание.

На выбор подхода к настройке (выбору) уставок токовых защит от многофазных КЗ могут влиять различные схемно-режимные факторы, среди которых длина ВЛ 110, 35 кВ, различие уровней токов КЗ в максимальном и минимальном режимах, электрическая удаленность от центров питания (электростанций) и некоторые другие.

Альтернативный подход имеет некоторые преимущества: отключение без замедления КЗ в любой точке защищаемой линии (устойчивая работа электрической системы), большую чувствительность (устойчивость) первой и второй ступеней ТО, следовательно, большую зону (глубину) резервного действия в максимальных режимах и наиболее полный охват защищаемой линии (приемлемый Кч) в минимальных режимах.
Среди недостатков: допускаемые отказы несрабатывания первой ступени токовой защиты при КЗ в трансформаторе, исправляемые действием АПВ [1], несколько увеличенная задержка срабатывания второй ступени токовой защиты от многофазных КЗ (ТО с выдержкой времени); в некоторых случаях излишнее погашение подстанции при отказе ТО, установленных на вводах трансформатора (отходящих фидерах) стороны СН(НН) подстанции, и опережающем действии второй ступени ТО на линии по отношению к МТЗ на вводе трансформатора (отходящих линиях).

По тому же принципу может быть выполнена настройка дистанционных защит, установленных на радиальных ВЛ 35–110 кВ и КЛ 35 кВ. Это дает возможность при сохранении всех преимуществ применения данной методики выбора уставок для дистанционных защит получить более устойчивую работу дистанционной защиты, которая, как известно, в определенных пределах не зависит от уровня токов КЗ в максимальном и минимальном режимах.

В радиальных сетях 35–110 кВ с односторонним питанием при применении рассмотренных способов выбора параметров КСЗ возможно улучшение защитоспособности, чувствительности и быстродействия основных (первой и второй) ступеней токовой (дистанционной) защиты при их выполнении с неполной селективностью (первая ступень) в сочетании с устройствами АПВ и АВР, исправляющими их допущенные излишние срабатывания.

Несколько улучшенные свойства второй ступени можно получить при условии ее согласования с защитой шин, включенной на сумму токов вводов трансформатора (неполной дифференциальной защитой шин) на стороне СН(НН) или с ТО (самой грубой) отходящих ВЛ (КЛ) 35 (6–10) кВ.

  1. Правила устройства электроустановок, 7-е изд.
  2. Ластовкин В.Д., Куров Р.Г. Понижающие трансформаторы 110–220 кВ. Защита шин среднего напряжения // Новости ЭлектроТехники. 2012. № 2(74).
  3. Федосеев А.М. Релейная защита электроэнергетических систем. Релейная защита сетей. М.:Энергоатомиздат, 1984.

Многолетний опыт эксплуатации в ряде энергосистем [1] показывает, что панели ДФЗ имели случаи излишней работы при отключении внешних КЗ защитами смежных линий. Во времена СССР такие случаи исследовались в Иркутской и Свердловской энергосистемах – была установлена связь между излишними действиями защит ДФЗ и изменением направления тока, протекающего по линии. Также было выявлено, что неправильное действие защит происходит из-за появления одиночного импульса тока в цепи органа сравнения фаз (ОСФ) ДФЗ, достаточного для срабатывания защиты. Поскольку явление связано с изменением направления тока, оно получило название «переворот фазы» (или «реверс мощности»).

Из практики эксплуатации известно, что случаи излишней работы ДФЗ, связанные с переворотом фазы, редки. Одна и та же защита при большей части внешних коротких замыканий (КЗ) отрабатывает избирательно и лишь иногда может сработать излишне. Ввиду редкости таких случаев их объясняют «некоторыми различиями характеристик блоков манипуляции, а также трансформаторов тока по концам линии, что в условиях переходного процесса в сети при отключениях КЗ вызывает в совокупности кратковременную неидентичность переходного процесса на выходе блоков манипуляции».

Для предотвращения излишних действий защиты предлагалось вводить замедление защиты либо с помощью блока автоматического замедления БФКЦ, разработанного ВНИИЭ, либо просто увеличением времени срабатывания выходного реле ДФЗ. Из этого можно сделать предварительный вывод, что для срабатывания защиты достаточно различий в настройке органов манипуляции в пределах допусков, указанных в инструкции по наладке. Поэтому считается, что устранить причину появления импульса тока приема нельзя, можно лишь предотвратить излишнее срабатывание при появлении одиночного импульса ценой снижения быстродействия защиты. Аналогичные меры производители применяют и в современных цифровых устройствах ДФЗ.

Однако ввод замедления ухудшает параметры ДФЗ, что может привести к невыполнению п. 3.2.108 ПУЭ [2]. Поэтому целесообразным способом улучшения работы ДФЗ при всех видах КЗ является не ее замедление, а совершенствование работы алгоритмов и ключевых узлов: органа манипуляции и ОСФ, каналов измерения и передачи.

Хотя статья и посвящена ДФЗ, перечень вопросов, требующих рассмотрения для совершенствования известного принципа очень широк, поэтому далее будут кратко рассмотрены лишь некоторые из них.

Выбор и расчет релейной защиты

Помимо точного формирования фазы тока манипуляции должен быть рассмотрен вопрос точности и качества ее измерения. ОСФ должен иметь механизм корректной работы в условиях наличия помех. На основании [4, 5] помехи при коммутационных операциях имеют значительный уровень и обуславливаются переходными процессами, возникающими при пробое промежутка между контактами выключателя и разъединителя, при восстановлении изоляционных свойств этого промежутка.

При применении ДФЗ необходимо обращать внимание на точность функционирования органа сравнения фаз и органа формирования тока манипуляции.
Замедление ДФЗ с целью компенсации кратковременной неидентичности переходного процесса на выходе блоков манипуляции для цифровых РЗА является не оптимальной мерой.
Повышение качества принципиального функционирования ДФЗ целесообразно решать за счет повышения точности измерений, а также через совершенствование работы органа манипуляции и органа сравнения фаз.
• Применение более высоких частот дискретизации для органа манипуляции и интегрального ОСФ, увеличение динамического диапазона измерений, снижение погрешности измерений фазных токов повышают избирательность действия ДФЗ в сложных переходных режимах и без ущерба для быстродействия.

Схема подключения дифференциальной защиты, входящей в состав шкафа ШЭ2607 041, к трансформаторам тока и напряжения приведена на рис.4.1.

Методика выбора уставок в настоящей главе изложена на основании рекомендаций фирмы «ЭКРА» [8].

Трансформаторы тока для каждой из сторон защищаемого трансформатора выбираются на разные номинальные токи и имеют разные коэффициенты трансформации. В результате вторичные токи в плечах дифференциальной защиты различаются по величине.

Силовые трансформаторы могут иметь обмотки, собранные по схемам Y/∆ или ∆/Y, что приводит к несовпадению по фазам вторичных токов в плечах дифференциальной защиты.

Для правильной работы дифференциальной защиты в микропроцессорных устройствах производится выравнивание вторичных токов по величине и по фазе программным способом.

      1. Выравнивание различий по величине во вторичных токах

В терминалах фирмы «ЭКРА» выравнивание вторичных токов по величине производится двумя способами:

— грубое выравнивание выполняется выбором числа витков первичной обмотки входных трансформаторов тока терминала;

— точное выравнивание – программным (цифровым) способом.

9.9.1 На линиях с двухсторонним питанием, отнесенным к ЕНЭС, а также отходящих от ПС ЕНЭС, должны устанавливаться две независимые защиты от всех видов повреждения: быстродействующая защита с абсолютной селективностью и комплект ступенчатых защит (резервная защита). Должны быть предусмотрены меры по отстройке быстродействующих защит от коротких замыканий за силовыми трансформаторами отпаечных подстанций.

Вы видите, что токовая защита от ОЗЗ по 3Io исчезла из обязательных. По сути, ПЭУ не делает различия между типами линий, но для воздушных сетей ток замыкания на землю может оказаться настолько мал, что данная защита просто не будет работать (устройству РЗА может не хватить чувствительности аналогового канала для измерения 3Io)

Также на полностью воздушной линии нет трансформаторов тока нулевой последовательности («бублика»), а суммирование фазных токов дает большую погрешность. На таких объектах остается только использовать надежную неселективную сигнализацию по 3Uo.

Однако, если ток все же достаточен для работы защиты по 3Io, то применять ее нужно! Также часто в начале воздушных линий делают короткую кабельную вставку для упрощения подключения к ячейке КРУ. В этом случае на линию устанавливают ТТНП, что также улучшает работу защиты от ОЗЗ.

Стоит отметить, что здесь мы не рассматриваем случаи, когда по условиям эксплуатации, нужно отключать линию при возникновении ОЗЗ (обычно по 3Uo). Такие требования есть, например, в карьерах и на торфяных разработках. Отнесем это к специальным электроустановкам.

На рис. 1 приведена принципиальная схема включения чувствительных ступеней токовых защит НП параллельных линий с селективным органом. В защите селективный орган содержит три плеча: первое и второе включены на токи нулевой последовательности линий и третье на их сумму (магнитную или электрическую). Правильная работа чувствительных ступеней токовых защит линий селективным органом обеспечивается следующим образом: а) при разрывах фаз: в линии с разрывом протекает полный ток НП, в неповрежденной параллельной — доля тока, в третьем плече протекает разность токов линий, которая по значению также меньше тока линии с разрывом и в результате сравнения токов в селективном органе срабатывает исполнительный орган плеча линии с разрывом и вводит ее чувствительную ступень в действие, чувствительная ступень неповрежденной линии блокируется; б) при коротком замыкании в зоне резервирования защиты: при КЗ в смежной сети в линиях протекают одинаковые токи, в третьем плече селективного органа протекает сумма токов обеих линий. Рис. 2. Схема подстанции 110 кВ Волгоградэнерго, расположенной между двумя подстанциями с мощными источниками: пт — разрыв фазы

В селективном органе срабатывает исполнительный орган третьего плеча и вводит в действие одновременно чувствительные ступени защит обеих линий, аналогично действию при включении их с реле направления мощности. Отключение линии при разрыве фаз достаточно производить с одной стороны. Однако в общем случае вопрос, выполнять релейную защиту с одной или двух сторон параллельных линий, решается исходя из результата анализа поведения чувствительных ступеней защит смежных сетей при разрыве фаз на параллельных линиях.

Рассмотрим ГОСТ 14857-76 «СХЕМЫ ЗАЩИТЫ ОТ ОПАСНЫХ НАПРЯЖЕНИЙ И ТОКОВ, ВОЗНИКАЮЩИХ НА ЛИНИЯХ ПРОВОДНОГО ВЕЩАНИЯ. Общие требования и нормы» (переиздан в 1999 году).

Настоящий стандарт распространяется на вводные устройства станций и линейные сооружения сетей проводного вещания(ПВ) и устанавливает общие требования и нормы к схемам защиты абонентов и оборудования сетей ПВ от опасных напряжений и токов, возникающих в линиях ПВ при грозовых разрядах и соприкосновении проводов ПВ с проводами воздушных линий электропередачи (ВЛ) напряжением до 600 В.

Пункт 1.1.

Станции ПВ со стороны воздушных фидерных линий должны быть защищены разрядниками ИР-0,3, ИР-0,5, ИР-7,0 и предохранителями ПР-1, включенными по схеме в соответствии с черт. 1 (при кабельном вводе) и черт. 2 (без кабельного ввода). При напряжении фидерной линии 960 В искровые разрядники ИР-0,3 в схемах черт.1, 2 должны быть заменены на разрядники ИР-0,5. При включении в разрез фидерной линии корректирующих трансформаторов они должны быть защищены с обеих сторон воздушной линии искровыми разрядниками ИР-0,3, включенными на клеммах обмоток трансформаторов. Сопротивление заземления разрядников должно соответствовать значениям, указанным в п. 7.1.

Пункт 1.6.

Оборудование станции ПВ, подключенное к подземной кабельной линии, должно быть защищено на входе кабельной линии искровыми разрядниками ИР-0,3. При этом токоотвод от разрядников ИР-0,3 и экран кабелей (или металлическая оболочка) должны быть присоединены к заземлению станции.

Пункт 1.7.

Повышающие и понижающие трансформаторы, устанавливаемые на воздушной линии (без кабельного ввода),должны быть защищены искровыми разрядниками ИР-0,3 и ИР-7,0, включенными по схеме, указанной на черт. 2.

Пункт 1.8.

Понижающие трансформаторы, устанавливаемые на фидерных отводах магистральной линии, должны быть защищены искровыми разрядниками ИР-0,3, ИР-0,5 и ИР-7,0 со стороны воздушной линии, как показано на черт.1, 2.

Пункт 1.9.

На линиях, экранированных по всей длине другими сооружениями (см. примечание к п. 2.3), включение искровых разрядников ИР-7,0 не требуется.

Пункт 2.1.

Станции ПВ со стороны воздушных фидерных линий с кабельными вводами, независимо от того, подвешены ли провода на собственных опорах, совместно на общих опорах с ВЛ 380/220 В или совместно с линиями сельской связи, должны быть защищены: а) при напряжении фидерной линии 120 В — разрядниками типа Р-350, предохранителями СН-1,0 на станции и разрядниками ИР-0,3, ИР-7,0 — согласно схеме черт.3; б) при напряжении фидерной линии 240 и 360 В — согласно схеме черт.3 с заменой разрядника Р-350 на искровой разрядник ИР-0,3.

Пункт 2.2.

Включение элементов защиты на выводной опоре и разрядников ИР-7,0 на расстоянии 150 — 200 м от выводной опоры не требуется, если на опорах на расстоянии до 200 м включен абонентский трансформатор. Если абонентский трансформатор установлен на расстоянии свыше 200 м от выводной опоры, то на выводной опоре должен быть включен разрядник ИР-0,3, а при включении абонентского трансформатора на расстоянии св. 300 м — включен также разрядник ИР-7,0, как указано на черт. 3.

Пункт 2.3.

На фидерных линиях, экранированных по всей длине от ударов молнии различными сооружениями или близко расположенными деревьями, включение искровых разрядников к проводам воздушной линии не требуется. В этом случае разрядники должны быть включены только на станции. Примечание. Экранированными линиями считают такие линии, у которых угол a, образованный между линией, соединяющей вершины опор и крыш зданий, деревьев и так далее и вертикалью, проходящей через эти экранирующие сооружения или деревья, составляет не более 30°, как показано на черт. 4.

Пункт 3.1.

На воздушных линиях всегда нужно вводить автоматическое повторное включение (АПВ). Алгоритм пробует включить линию после аварийного отключения, проверяя наличие КЗ. Часто на воздушных линиях КЗ самоустраняются и тогда АПВ бывает успешным.

В России АПВ обычно делается на один цикл, т.е. в случае сохранения КЗ на линии, других попыток автоматического включения не производится.

Автоматическое повторное включение — важный элемент для увеличения надежности электроснабжения потребителей.

Прежде чем рассматривать трансформаторы тока нулевой последовательности, нужно остановится на обычных трансформаторах. Все устройства этого типа разделяются на трансформаторы тока и напряжения. Они применяются для измерений токов и напряжений с большими величинами. На одну из обмоток подается ток или напряжение, которое требуется измерить, а на выходе второй обмотки снимаются уже преобразованные, как правило пониженные значения этих параметров.

Через трансформаторы тока наиболее часто подключаются магнитоэлектрические вольтметры и параллельные цепи, а трансформаторы напряжения соединяются с амперметрами и другими последовательными цепями.

Для обеспечения ступенчатого принципа вывода линии, токовая защита, контролирующая появление нулевой последовательности в цепях, должна соответствовать селективности срабатывания. Здесь под селективностью понимается последовательное отключение определенных участков цепи, в зависимости от их значимости, с целью определения места повреждения или выделения поврежденного промежутка. Для этого выбираются соответствующие уставки срабатывания по времени для защиты. Рассмотрите пример выбора уставок на такой схеме.

При оценке обеспечения требований устойчивости,
исходя из значений остаточного напряжения по 3.2.108, необходимо
руководствоваться следующим:

1. Для одиночной связи между электростанциями или
энергосистемами указанное в 3.2.108 остаточное напряжение должно быть проверено
на шинах подстанций и электростанций, входящих в данную связь, при КЗ на
линиях, отходящих от этих шин, кроме линий, образующих связь; для одиночной
связи, содержащей часть участков с параллельными линиями, — также при КЗ на
каждой из этих параллельных линии.

2. При наличии нескольких связей между электростанциями или
энергосистемами указанное в 3.2.108 значение остаточного напряжения должно быть
проверено на шинах только тех подстанций или электростанций, где соединяются
эти связи, при КЗ на связях и на других линиях, питающихся от этих шин, а также
на линиях, питающихся от шин подстанций связей.

В настоящем выпуске даны новые методы расчетов защит линий 330—500 кВ, линий с ответвлениями, линий с односторонним питанием, а также дан выбор параметров срабатывания защит по условию отстройки от броска намагничивающего тока силовых трансформаторов и т. д.

Руководящие указания являются рекомендуемым материалом, которому должны следовать как проектные, так и эксплуатационные организации с целью максимального применения типовых решений, удешевления и ускорения строительства электроустановок, внедрения в эксплуатацию наиболее совершенных и проверенных опытом решений. Отступления от соответствующих решений, приведенных в Руководящих указаниях, допускаются в случаях, когда это обосновано конкретными местными условиями, а также для ранее запроектированных, монтируемых или действующих устройств, если эти отступления не ведут к серьезным недостаткам и не противоречат принципиальному направлению Руководящих указаний.

В электротехнике есть понятие о симметричных и несимметричных системах фазных токов или напряжений. Симметричная система предусматривает равенство фазных токов (напряжений) трехфазной сети. При этом векторы фазных токов могут стоять относительно друг к другу в прямой, обратной, а также нулевой последовательности (НП).

При прямой последовательности векторы фазных токов идут в последовательности А, В, С, каждая из фаз отстает от другой на 120 гр. Обратная последовательность – чередование фаз А, С, В, угол сдвига фаз тот же – 120 гр. При нулевой последовательности векторы трех фаз совпадают по направлению. Несимметричная система представляется как значение тока – геометрическая сумма векторов всех составляющих прямой, обратной и нулевой последовательности.

В нормальном режиме работы участка электросети система токов и напряжений является симметричной, то же самое касается межфазных коротких замыканий. В данном случае, как напряжение, так и ток НП равны нулю. В случае возникновения однофазного замыкания на землю система становится несимметричной – возникает ток и напряжение НП.

Справочник определяет основные положения релейной защиты и предназначен для решения основных задач по релейной защите. Справочник включает в себя методические указания по расчетам токов коротких замыканий, электрическим расчетам, расчетам уставок и характеристик релейной защиты, основные сведения по электромеханической релейной аппаратуре и комплектным устройствам защиты и автоматики (большинство реле устаревшие), по автоматам, приводам выключателей, электроизмерительным приборам и электротехническим материалам, типовые схемы релейной защиты, АПВ и АВР и рекомендации по их применению.

Справочник отражает основные принципиальные решения в области релейной защиты, АПВ и АВР.

Справочник рассчитан в основном на инженеров, техников и мастеров, а также квалифицированных рабочих, работающих в области эксплуатации релейной защиты и автоматизации энергосистем и промышленных предприятий, а также на работников проектных и наладочных организаций и студентов средних и высших учебных заведений.

В настоящем стандарте дан комплексный подход к расчету уставок дифференциально-фазной защиты линий, выбору диапазона измерений аналоговых каналов терминалов БМРЗ, даны рекомендации по выбору выдержек времени. В стандарте приведены подробные примеры расчета уставок дифференциально-фазной защиты линий. Расчёты в стандарте выполнены в первичных значениях величин. Для ввода расчетных значений уставок в терминал необходимо первичные значения величин перевести во вторичные. Использование стандарта позволит проектным организациям и эксплуатирующим предприятиям наиболее полно реализовать все преимущества, которыми обладают терминалы БМРЗ, выпускаемые ООО «НТЦ «Механотроника».

Принцип работы дистанционной защиты в электрических сетях 110 кВ

  • Опытная проверка действия защит трансформатора (Лабораторная работа Р10)
  • Проектирование автоматической частотной разгрузки по заданной схеме
  • Расчет токов нормального и аварийного режимов. Максимальная токовая защита от внешних коротких замыканий

Требования к оснащению линий электропередачи и оборудования объектов электроэнергетики классом напряжения 110 кВ и выше устройствами и комплексами релейной защиты и автоматики, а также к принципам функционирования устройств и комплексов релейной защиты и автоматики

(с изменениями на 10 июля 2020 года)

1. Настоящие требования к оснащению линий электропередачи и оборудования объектов электроэнергетики классом напряжения 110 кВ и выше устройствами и комплексами релейной защиты и автоматики, а также к принципам функционирования устройств и комплексов релейной защиты и автоматики устанавливают требования к:

оснащению линий электропередачи и оборудования (за исключением вставок и передач постоянного тока, генерирующего оборудования ветровых и солнечных электростанций, систем возбуждения генерирующего оборудования) объектов электроэнергетики классом напряжения 110 кВ и выше устройствами и комплексами релейной защиты и автоматики (далее — РЗА) различных видов;

принципам функционирования устройств и комплексов РЗА, в том числе их резервированию, функциональной взаимосвязи устройств РЗА, возможности совмещения функций РЗА в одном устройстве, структуре построения отдельных видов противоаварийной автоматики.

2. Настоящие требования должны выполняться при:

проектировании, строительстве, реконструкции, модернизации и техническом перевооружении (далее — реконструкция) объектов электроэнергетики, разработке необходимой для этого проектной документации, подготовке и согласовании технических условий на технологическое присоединение объектов электроэнергетики и энергопринимающих установок потребителей электрической энергии к электрическим сетям, разработке схем выдачи мощности объектов по производству электрической энергии, схем внешнего электроснабжения энергопринимающих установок потребителей электрической энергии, проектной документации для их технологического присоединения к электрическим сетям, создании (модернизации) устройств и комплексов РЗА, разработке необходимой для этого проектной и рабочей документации;

обеспечении функционирования в составе электроэнергетической системы устройств и комплексов РЗА, созданных (модернизированных) после вступления в силу настоящих требований.

Положения пунктов 7-16, 24, 25, 27(1), 32, 33, 40, 122, абзаца шестого пункта 123, абзаца шестого пункта 126, пунктов 127, 132, 147 настоящих требований также должны выполняться при обеспечении функционирования в составе электроэнергетической системы устройств и комплексов РЗА, введенных в эксплуатацию до вступления в силу настоящих требований.

(Абзац в редакции, введенной в действие с 23 января 2021 года приказом Минэнерго России от 10 июля 2020 года N 546. — См. предыдущую редакцию)

3. Выполнение настоящих требований является обязательным для:

субъектов электроэнергетики и потребителей электрической энергии, владеющих на праве собственности или ином законном основании объектами по производству электрической энергии, объектами электросетевого хозяйства и (или) энергопринимающими установками, входящими в состав электроэнергетической системы или присоединяемыми к ней (далее — владельцы объектов электроэнергетики);

системного оператора и субъектов оперативно-диспетчерского управления в электроэнергетике в технологически изолированных территориальных электроэнергетических системах (далее — субъект оперативно-диспетчерского управления);

проектных организаций и иных юридических и физических лиц, осуществляющих разработку документации, указанной в пункте 2 настоящих требований, или выступающих заказчиками при выполнении соответствующих работ.

6. При проектировании, строительстве, реконструкции объектов электроэнергетики, разработке необходимой для этого проектной документации, подготовке и согласовании технических условий на технологическое присоединение объектов электроэнергетики и энергопринимающих установок потребителей электрической энергии к электрическим сетям, разработке схем выдачи мощности объектов по производству электрической энергии, схем внешнего электроснабжения энергопринимающих установок потребителей электрической энергии, проектной документации для их технологического присоединения к электрическим сетям, создании (модернизации) устройств и комплексов РЗА, разработке необходимой для этого проектной и рабочей документации, а также при организации и осуществлении эксплуатации устройств и комплексов РЗА должны быть обеспечены оснащение ЛЭП и оборудования объектов электроэнергетики устройствами РЗА и функционирование таких устройств в соответствии с пунктами 140-168 Правил технологического функционирования электроэнергетических систем, утвержденных постановлением Правительства Российской Федерации от 13 августа 2018 г. N 937 (далее — Правила технологического функционирования электроэнергетических систем) и настоящими требованиями.

7. Для обеспечения надежности работы РЗА должно осуществляться функциональное и (или) аппаратное резервирование устройств РЗ и ПА путем выполнения настоящих требований.

(Пункт в редакции, введенной в действие с 23 января 2021 года приказом Минэнерго России от 10 июля 2020 года N 546. — См. предыдущую редакцию)

8. Владельцами объектов электроэнергетики должна быть обеспечена правильная работа устройств РЗА при изменении частоты электрического тока в диапазоне 45-55 Гц.

9. ЛЭП и оборудование объектов электроэнергетики должны быть оснащены устройствами РЗ от внутренних КЗ и других ненормальных режимов их работы.

10. Резервные защиты ЛЭП (оборудования) должны удовлетворять требованию взаимной совместимости в части согласования их характеристик срабатывания с характеристиками срабатывания резервных защит ЛЭП (оборудования) прилегающей сети для обеспечения селективности их действия при дальнем резервировании.

11. На объектах электроэнергетики должна обеспечиваться регистрация аварийных событий и процессов.

12. Для выявления, предотвращения развития и ликвидации аварийного режима в энергосистеме должны применяться следующие виды ПА:

АПНУ, включая АРО СГО для предотвращения нарушения статической устойчивости при отключении ЛЭП, сетевого и генерирующего оборудования, АРПМ для ликвидации недопустимой перегрузки сечения электрической сети по активной мощности, АРКЗ для предотвращения нарушения динамической устойчивости генерирующего оборудования электростанций, ЦСПА и (или) комплексы АПНУ для реализации функции предотвращения нарушения устойчивости энергосистемы;

АЛАР для ликвидации асинхронных режимов отдельных генераторов, электростанций и частей энергосистем;

АОСЧ для обеспечения живучести Единой энергетической системы России и технологически изолированных территориальных электроэнергетических систем при возникновении дефицита активной мощности и снижении частоты, создающих угрозу повреждения оборудования электростанций, безопасности работы АЭС, нарушения работы энергопринимающих установок потребителей, а также возникновения лавины частоты и напряжения с полным прекращением электроснабжения нагрузки потребителей;

АОПЧ для предотвращения недопустимого по величине и длительности повышения частоты в энергосистеме до уровня, при котором возможно срабатывание автоматов безопасности или технологических защит от повышения частоты вращения турбин ТЭС, ГЭС и АЭС;

АОСН для предотвращения недопустимого по величине и длительности снижения напряжения по условиям устойчивости энергопринимающих установок потребителей электрической энергии;

АОПН для предотвращения недопустимого по величине и длительности повышения напряжения на оборудовании объектов электроэнергетики;

АОПО для предотвращения недопустимой по величине и длительности токовой нагрузки ЛЭП и электросетевого оборудования.

Индикаторы короткого замыкания являются устройствами, которые срабатывают под воздействием магнитного поля, создаваемого протекающим в проводнике при возникновении короткого замыкания током.

Если к существующей̆ распределительной̆ сети подключены дополнительные децентрализованные фидеры питания, то в этом случае короткое замыкание будет питаться и со стороны подстанции, и со стороны источника децентрализованного питания (рис. 2, справа). В подобных случаях необходимы индикаторы короткого замыкания с указанием направления на неисправность.

Если линия является фидером, и питание короткого замыкания возможно только с одной стороны, то неисправность находится между последним сработавшим ИКЗ и первым не сработавшим ИКЗ (рис. 2, слева).

3-3. Дистанционная защита одиночных линий 35 кВ и 110 кВ с ответвлениями

В компанию «СвязьКомплект» поступил запрос от компании “Россети — МРСК Сибири” на оснащение в рамках опытной эксплуатации воздушной линии электропередачи (ЛЭП) А — Б (название изменено) 110 кВ индикаторами короткого замыкания. ЛЭП имеет отпайку В — Г.

Протяженность воздушной линии А — Б составляет 50,63 км. Отпайка В отходит от линии «А – Б» на расстоянии 38,40 км от ПС А. Однолинейные схемы линий «А – Б» и «В – Г» представлены на рисунках 3 и 4.

Выбор места установки является важной задачей, которая влияет на эффективность использования индикаторов короткого замыкания. При выборе места установки необходимо учитывать множество факторов: транспортную доступность, аварийность участков и другие факторы.

ИКЗ необходимо устанавливать непосредственно на провод воздушной линии в пролете, 1-3 метра от опоры.

На рис. 2 приведен пример подстанции 110 кВ Волгоградэнерго, расположенной между подстанциями с мощными источниками. По режиму сеть характеризуется наличием перетока мощности через ПС Е. При разрывах фаз на линиях № 10 и 12 напряжение нулевой последовательности на шинах ПС Е мало и не обеспечивает работу реле направления мощности с блокирующим сигналом в защитах линий и селективность последних поэтому ими не обеспечивается.

Рассмотрим пример отключений при разрыве фаз на линии в этой сети.
До выполнения релейной защиты при разрывах фаз:
при разрыве фазы на линии № 10 срабатывает и отключает линию № 12 IV ступень защиты на ПС Е с уставкой 50 А — 3,2 с, как имеющая в транзите наименьшую выдержку времени. Следующей отключается на ПС К линия с разрывом № 10 от нагрузочного тока двух трансформаторов ПС Е (нейтрали трансформаторов заземлены). В результате оказалась излишне погашенной ПС Е.
Селективное отключение будет достигнуто, если на линиях 110 кВ ПС Е выполнить релейную защиту при разрывах фаз.
На рис. 3 приведена принципиальная схема включения чувствительных ступеней токовых защит НП с селективным органом линий на ПС со схемой “Мостик с выключателями в цепях линий”.
Селективный орган имеет два плеча, которыми включается на токи НП линий. Токи в линиях отличаются друг от друга на величину токов нейтралей трансформаторов, что обеспечивает работу селективного органа по выбору поврежденной линии.
Именно так выполняется защита на ПС Е.

На рис. 4 приведена принципиальная схема релейной защиты линий 110 кВ при разрыве фаз на Камышинской ТЭЦ (Волгоградэнерго).
На линиях связи 110 кВ ТЭЦ с системой предложено выполнить такую защиту с использованием устройства релейной защиты при разрыве фаз. Устройство содержит два токовых реле и селективный орган, включенные на токи нулевой последовательности линий.
Для расширения зоны действия защиты уставка токовых реле принимается минимально возможной (0,05 и- 0,1)/н. При появлении разрыва защита выявляет его и подает сигнал.
Аналогичным образом может быть выполнена защита с использованием реле направления мощности, где они обеспечивают селективность.

  • О мерах безопасности при работах на ВЛ под наведенным напряжением
  • Опыт комплексного обследования воздушных линий электропередачи
  • Построение импульсных измерителей зоны повреждения ВЛ 110-500 кВ
  • Электрические и механические характеристики стержневых изоляторов ЛК 70
  • Закрепление опор линий электропередачи 35-750кВ
  • Статья
  • Обсуждение
  • Читать
  • Править
  • История

3.2.106. Для линий в сетях 110-500 кВ с эффективно заземленной нейтралью должны быть предусмотрены устройства релейной защиты от многофазных замыканий и от замыканий на землю.

3.2.107. Защиты должны быть оборудованы устройствами, блокирующими их действие при качаниях, если в сети возможны качания или асинхронный ход, при которых вероятны излишние срабатывания защиты. Допускается выполнение защиты без блокирующих устройств, если она отстроена от качаний по времени (около 1,5-2 с).

3.2.108. Для линий 330 кВ и выше в качестве основной должна быть предусмотрена защита, действующая без замедления при КЗ в любой точке защищаемого участка.

3.2.119. Для сборных шин 110 кВ и выше электростанций и подстанций отдельные устройства релейной защиты должны быть предусмотрены:

1) для двух систем шин (двойная система шин, полуторная схема и др.) и одиночной секционированной системы шин;

2) для одиночной несекционированной системы шин, если отключение повреждений на шинах действием защит присоединенных элементов недопустимо по условиям, которые аналогичны приведенным в 3.2.108, или если на линиях, питающих рассматриваемые шины, имеются ответвления.

3.2.120. Для сборных шин 35 кВ электростанций и подстанций отдельные устройства релейной защиты должны быть предусмотрены:

по условиям, приведенным в 3.2.108;

для двух систем или секций шин, если при использовании для их разделения защиты, установленной на шиносоединительном (секционном) выключателе, или защит, установленных на элементах, которые питают данные шины, не удовлетворяются требования надежности питания потребителей (с учетом возможностей, обеспечиваемых устройствами АПВ и АВР).

3.2.121. В качестве защиты сборных шин электростанций и подстанций 35 кВ и выше следует предусматривать, как правило, дифференциальную токовую защиту без выдержки времени, охватывающую все элементы, которые присоединены к системе или секции шин. Защита должна осуществляться с применением специальных реле тока, отстроенных от переходных и установившихся токов небаланса (например, реле, включенных через насыщающиеся трансформаторы тока, реле с торможением).

При присоединении трансформатора (автотрансформатора) 330 кВ и выше более чем через один выключатель рекомендуется предусматривать дифференциальную токовую защиту ошиновки.

3.2.122. Для двойной системы шин электростанций и подстанций 35 кВ и выше с одним выключателем на присоединенный элемент дифференциальная защита должна быть предусмотрена в исполнении для фиксированного распределения элементов.

В защите шин 110 кВ и выше следует предусматривать возможность изменения фиксации при переводе присоединения с одной системы шин на другую на рядах зажимов.

3.2.123. Дифференциальная защита, указанная в 3.2.121 и 3.2.122, должна быть выполнена с устройством, контроля исправности вторичных цепей задействованных трансформаторов тока, действующим с выдержкой времени на вывод защиты из работы и на сигнал.

3.2.124. Для секционированных шин 6-10 кВ электростанций должна быть предусмотрена двухступенчатая неполная дифференциальная защита, первая ступень которой выполнена в виде токовой отсечки по току и напряжению или дистанционной защиты, а вторая — в виде максимальной токовой защиты. Защита должна действовать на отключение питающих элементов и трансформатора собственных нужд.

Если при указанном выполнении второй ступени защиты не обеспечивается требуемая чувствительность при КЗ в конце питаемых реактированных линий (нагрузка на шинах генераторного напряжения большая, выключатели питаемых линий установлены за реакторами), следует выполнять ее в виде отдельных комплектов максимальных токовых защит с пуском или без пуска напряжения, устанавливаемых в цепях реакторов; действие этих комплектов на отключение питающих элементов должно контролироваться дополнительным устройством, срабатывающим при возникновении КЗ. При этом на секционном выключателе должна быть предусмотрена защита (предназначенная для ликвидации повреждений между реактором и выключателем), вводимая в действие при отключении этого выключателя. При выделении части питающих элементов на резервную систему шин должна быть предусмотрена неполная дифференциальная защита шин в исполнении для фиксированного распределения элементов.

Если возможны частые режимы работы с разделением питающих элементов на разные системы шин, допускается предусматривать отдельные дистанционные защиты, устанавливаемые на всех питающих элементах, кроме генераторов.

3.2.125. Для секционированных шин 6-10 кВ электростанций с генераторами мощностью 12 МВт и менее допускается не предусматривать специальную защиту; при этом ликвидация КЗ на шинах должна осуществляться действием максимальных токовых защит генераторов.

3.2.126. Специальные устройства релейной защиты для одиночной секционированной и двойной систем шин 6-10 кВ понижающих подстанций, как правило, не следует предусматривать, а ликвидация КЗ на шинах должна осуществляться действием защит трансформаторов от внешних КЗ и защит, установленных на секционном или шиносоединительном выключателе. В целях повышения чувствительности и ускорения действия защиты шин мощных подстанций допускается применять защиту, включенную на сумму токов питающих элементов. При наличии реакторов на линиях, отходящих от шин подстанций, допускается защиту шин выполнять по аналогии с защитой шин электростанций.

3.2.127. При наличии трансформаторов тока, встроенных в выключатели, для дифференциальной защиты шин и для защит присоединений, отходящих от этих шин, должны быть использованы трансформаторы тока, размещенные с разных сторон выключателя, чтобы повреждения в выключателе входили в зоны действия этих защит.

Если выключатели не имеют встроенных трансформаторов тока, то в целях экономии следует предусматривать выносные трансформаторы тока только с одной стороны выключателя и устанавливать их по возможности так, чтобы выключатели входили в зону действия дифференциальной защиты шин. При этом в защите двойной системы шин с фиксированным распределением элементов должно быть предусмотрено использование двух сердечников трансформаторов тока в цепи шиносоединительного выключателя.

Основные защиты линий 110 (220) кВ

Глава 3.3

АВТОМАТИКА И ТЕЛЕМЕХАНИКА

ОБЛАСТЬ ПРИМЕНЕНИЯ. ОБЩИЕ ТРЕБОВАНИЯ

3.3.1. Настоящая глава Правил распространяется на автоматические и телемеханические устройства электростанций, энергосистем, сетей и электроснабжения промышленных и других электроустановок, предназначенные для осуществления:

1) АПВ линий или фаз линий, шин и прочих электроустановок после их автоматического отключения;

2) АВР резервного питания или оборудования;

3) включения синхронных генераторов и синхронных компенсаторов на параллельную работу;

4) регулирования возбуждения, напряжения и реактивной мощности;

5) регулирования частоты и активной мощности;

6) предотвращения нарушений устойчивости;

7) прекращения асинхронного режима;

8) ограничения снижения частоты;

9) ограничения повышения частоты;

10) ограничения снижения напряжения;

11) ограничения повышения напряжения;

12) предотвращения перегрузки оборудования;

13) диспетчерского контроля и управления.

Функции устройств по п. 4-11 определяются полностью или частично условиями работы энергосистемы в целом. Эти устройства должны проектироваться и эксплуатироваться соответствующими энергетическими предприятиями, энергообъединениями или по согласованию с ними.

В энергосистемах и на энергообъектах могут устанавливаться устройства автоматического управления, не охватываемые настоящей главой Правил и регламентируемые другими документами. Действия этих устройств должны быть согласованы между собой, а также с действием устройств и систем, рассматриваемых в данной главе.

В электрических сетях предприятий-потребителей электроэнергии следует применять такие устройства автоматики, которые по возможности не допускают нарушений наиболее ответственных технологических процессов при кратковременных перерывах электроснабжения, обусловленных действием защит и автоматики в сети внешнего и внутреннего электроснабжения (см. также 5.3.52, 5.3.53 и 5.3.58).

3.3.2. Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты.

Должно предусматриваться автоматическое повторное включение:

1) воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учетом конкретных условий;

2) шин электростанций и подстанций (см. 3.3.24 и 3.3.25);

3) трансформаторов (см. 3.3.26);

4) ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей (см. 3.3.38).

Для осуществления АПВ по п. 1-3 должны также предусматриваться устройства АПВ на обходных, шиносоединительных и секционных выключателях.

Допускается в целях экономии аппаратуры выполнение устройства группового АПВ на линиях, в первую очередь кабельных, и других присоединениях 6-10 кВ. При этом следует учитывать недостатки устройства группового АПВ, например возможность отказа в случае, если после отключения выключателя одного из присоединений отключение выключателя другого присоединения происходит до возврата устройства АПВ в исходное положение.

3.3.3. Устройства АПВ должны быть выполнены так, чтобы они не действовали при:

1) отключении выключателя персоналом дистанционно или при помощи телеуправления;

2) автоматическом отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;

3) отключении выключателя защитой от внутренних повреждений трансформаторов и вращающихся машин, устройствами противоаварийной автоматики, а также в других случаях отключений выключателя, когда действие АПВ недопустимо. АПВ после действия АЧР (ЧАПВ) должно выполняться в соответствии с 3.3.81.

Устройства АПВ должны быть выполнены так, чтобы была исключена возможностью многократного включения на КЗ при любой неисправности в схеме устройства.

Устройства АПВ должны выполняться с автоматическим возвратом.

3.3.4. При применении АПВ должно, как правило, предусматриваться ускорение действия релейной защиты на случай неуспешного АПВ. Ускорение действия релейной защиты после неуспешного АПВ выполняется с помощью устройства ускорения после включения выключателя, которое, как правило, должно использоваться и при включении выключателя по другим причинам (от ключа управления, телеуправления или устройства АВР). При ускорении защиты после включения выключателя должны быть приняты меры против возможного отключения выключателя защитой под действием толчка тока при включении из-за неодновременного включения фаз выключателя.

Не следует ускорять защиты после включения выключателя, когда линия уже включена под напряжение другим своим выключателем (т. е. при наличии симметричного напряжения на линии).

Допускается не ускорять после АПВ действие защит линий 35 кВ и ниже, выполненных на переменном оперативном токе, если для этого требуется значительное усложнение защит и время их действия при металлическом КЗ вблизи места установки не превосходит 1,5 с.

3.3.5. Устройства трехфазного АПВ (ТАПВ) должны осуществляться преимущественно с пуском при несоответствии между ранее поданной оперативной командой и отключенным положением выключателя; допускается также пуск устройства АПВ от защиты.

3.3.6. Могут применяться, как правило, устройства ТАПВ однократного или двукратного действия (последнее — если это допустимо по условиям работы выключателя). Устройство ТАПВ двукратного действия рекомендуется принимать для воздушных линий, в особенности для одиночных с односторонним питанием. В сетях 35 кВ и ниже устройства ТАПВ двукратного действия рекомендуется применять в первую очередь для линий, не имеющих резервирования по сети.

В сетях с изолированной или компенсированной нейтралью, как правило, должна применяться блокировка второго цикла АПВ в случае замыкания на землю после АПВ первого цикла (например, по наличию напряжений нулевой последовательности). Выдержка времени ТАПВ во втором цикле должна быть не менее 15-20 с.

3.3.7. Для ускорения восстановления нормального режима работы электропередачи выдержка времени устройства ТАПВ (в особенности для первого цикла АПВ двукратного действия на линиях с односторонним питанием) должна приниматься минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.

Выдержка времени устройства ТАПВ на линии с двусторонним питанием должна выбираться также с учетом возможного неодновременного отключения повреждения с обоих концов линии; при этом время действия защит, предназначенных для дальнего резервирования, учитываться не должно. Допускается не учитывать разновременности отключения выключателей по концам линии, когда они отключаются в результате срабатывания высокочастотной защиты.

ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

3.1.1. Настоящая глава Правил распространяется на защиту электрических сетей до 1 кВ, сооружаемых как внутри, так и вне зданий. Дополнительные требования к защите сетей указанного напряжения, вызванные особенностями различных электроустановок, приведены в других главах Правил.

3.1.2. Аппаратом защиты называется аппарат, автоматически отключающий защищаемую электрическую цепь при ненормальных режимах.

ТРЕБОВАНИЯ К АППАРАТАМ ЗАЩИТЫ

3.1.3. Аппараты защиты по своей отключающей способности должны соответствовать максимальному значению тока КЗ в начале защищаемого участка электрической сети (см. также гл. 1.4).

Допускается установка аппаратов защиты, нестойких к максимальным значениям тока КЗ, а также выбранных по значению одноразовой предельной коммутационной способности, если защищающий их групповой аппарат или ближайший аппарат, расположенный по направлению к источнику питания, обеспечивает мгновенное отключение тока КЗ, для чего необходимо, чтобы ток уставки мгновенно действующего расцепителя (отсечки) указанных аппаратов был меньше тока одноразовой коммутационной способности каждого из группы нестойких аппаратов, и если такое неселективное отключение всей группы аппаратов не грозит аварией, порчей дорогостоящего оборудования и материалов или расстройством сложного технологического процесса.

3.1.4. Номинальные токи плавких вставок предохранителей и токи уставок автоматических выключателей, служащих для защиты отдельных участков сети, во всех случаях следует выбирать по возможности наименьшими по расчетным токам этих участков или по номинальным токам электроприемников, но таким образом, чтобы аппараты защиты не отключали электроустановки при кратковременных перегрузках (пусковые токи, пики технологических нагрузок, токи при самозапуске и т.п.).

3.1.5. В качестве аппаратов защиты должны применяться автоматические выключатели или предохранители. Для обеспечения требований быстродействия, чувствительности или селективности допускается при необходимости применение устройств защиты с использованием выносных реле (реле косвенного действия).

3.1.6. Автоматические выключатели и предохранители пробочного типа должны присоединяться к сети так, чтобы при вывинченной пробке предохранителя (автоматического выключателя) винтовая гильза предохранителя (автоматического выключателя) оставалась без напряжения. При одностороннем питании присоединение питающего проводника (кабеля или провода) к аппарату защиты должно выполняться, как правило, к неподвижным контактам.

3.1.7. Каждый аппарат защиты должен иметь надпись, указывающую значения номинального тока аппарата, уставки расцепителя и номинального тока плавкой вставки, требующиеся для защищаемой им сети. Надписи рекомендуется наносить на аппарате или схеме, расположенной вблизи места установки аппаратов защиты.

ВЫБОР ЗАЩИТЫ

3.1.8. Электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения и требования селективности.

Защита должна обеспечивать отключение поврежденного участка при КЗ в конце защищаемой линии: одно-, двух- и трехфазных — в сетях с глухозаземленной нейтралью; двух- и трехфазных — в сетях с изолированной нейтралью.

Надежное отключение поврежденного участка сети обеспечивается, если отношение наименьшего расчетного тока КЗ к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя будет не менее значений, приведенных в 1.7.79 и 7.3.139.

3.1.9. В сетях, защищаемых только от токов КЗ (не требующих защиты от перегрузки согласно 3.1.10), за исключением протяженных сетей, например сельских, коммунальных, допускается не выполнять расчетной проверки приведенной в 1.7.79 и 7.3.139 кратности тока КЗ, если обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам проводников, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:

300 % для номинального тока плавкой вставки предохранителя;

450 % для тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку);

100 % для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки);

125 % для тока трогания расцепителя автоматического выключателя с регулируемой обратной зависящей от тока характеристикой; если на этом автоматическом выключателе имеется еще отсечка, то ее кратность тока срабатывания не ограничивается.

Наличие аппаратов защиты с завышенными уставками тока не является обоснованием для увеличения сечения проводников сверх указанных в гл. 1.3.

3.1.10. Сети внутри помещений, выполненные открыто проложенными проводниками с горючей наружной оболочкой или изоляцией, должны быть защищены от перегрузки.

Кроме того, должны быть защищены от перегрузки сети внутри помещений:

осветительные сети в жилых и общественных зданиях, в торговых помещениях, служебно-бытовых помещениях промышленных предприятий, включая сети для бытовых и переносных электроприемников (утюгов, чайников, плиток, комнатных холодильников, пылесосов, стиральных и швейных машин и т.п.), а также в пожароопасных зонах;

силовые сети на промышленных предприятиях, в жилых и общественных зданиях, торговых помещениях — только в случ��ях, когда по условиям технологического процесса или по режиму работы сети может возникать длительная перегрузка проводников;

сети всех видов во взрывоопасных зонах — согласно требованиям 7.3.94.

ОБЛАСТЬ ПРИМЕНЕНИЯ

3.2.1. Настоящая глава Правил распространяется на устройства релейной защиты элементов электрической части энергосистем, промышленных и других электроустановок выше 1 кВ; генераторов, трансформаторов (автотрансформаторов), блоков генератор — трансформатор, линий электропередачи, шин и синхронных компенсаторов.

Защита всех электроустановок выше 500 кВ, кабельных линий выше 35 кВ, а также электроустановок атомных электростанций и передач постоянного тока в настоящей главе Правил не рассматривается.

Требования к защите электрических сетей до 1 кВ, электродвигателей, конденсаторных установок, электротермических установок см. соответственно в гл. 3.1, 5.3, 5.6 и 7.5.

Устройства релейной защиты элементов электроустановок, не рассмотренные в этой и других главах, должны выполняться в соответствии с общими требованиями настоящей главы.

ОБЩИЕ ТРЕБОВАНИЯ

3.2.2. Электроустановки должны быть оборудованы устройствами релейной защиты, предназначенными для:

а) автоматического отключения поврежденного элемента от остальной, неповрежденной части электрической системы (электроустановки) с помощью выключателей; если повреждение (например, замыкание на землю в сетях с изолированной нейтралью) непосредственно не нарушает работу электрической системы, допускается действие релейной защиты только на сигнал;

б) реагирования на опасные, ненормальные режимы работы элементов электрической системы (например, перегрузку, повышение напряжения в обмотке статора гидрогенератора); в зависимости от режима работы и условий эксплуатации электроустановки релейная защита должна быть выполнена с действием на сигнал или на отключение тех элементов, оставление которых в работе может привести к возникновению повреждения.

3.2.3. С целью удешевления электроустановок вместо автоматических выключателей и релейной защиты следует применять предохранители или открытые плавкие вставки, если они:

могут быть выбраны с требуемыми параметрами (номинальные напряжение и ток, номинальный ток отключения и др.);

обеспечивают требуемые селективность и чувствительность;

не препятствуют применению автоматики (автоматическое повторное включение — АПВ, автоматическое включение резерва — АВР и т.п.), необходимой по условиям работы электроустановки.

При использовании предохранителей или открытых плавких вставок в зависимости от уровня несимметрии в неполнофазном режиме и характера питаемой нагрузки следует рассматривать необходимость установки на приемной подстанции защиты от неполнофазного режима.

3.2.4. Устройства релейной защиты должны обеспечивать наименьшее возможное время отключения КЗ в целях сохранения бесперебойной работы неповрежденной части системы (устойчивая работа электрической системы и электроустановок потребителей, обеспечение возможности восстановления нормальной работы путем успешного действия АПВ и АВР, самозапуска электродвигателей, втягивания в синхронизм и пр.) и ограничения области и степени повреждения элемента.

3.2.5. Релейная защита, действующая на отключение, как правило, должна обеспечивать селективность действия, с тем чтобы при повреждении какого-либо элемента электроустановки отключался только этот поврежденный элемент.

Допускается неселективное действие защиты (исправляемое последующим действием АПВ или АВР):

а) для обеспечения, если это необходимо, ускорения отключения КЗ (см. 3.2.4);

б) при использовании упрощенных главных электрических схем с отделителями в цепях линий или трансформаторов, отключающими поврежденный элемент в бестоковую паузу.

3.2.6. Устройства релейной защиты с выдержками времени, обеспечивающими селективность действия, допускается выполнять, если: при отключении КЗ с выдержками времени обеспечивается выполнение требований 3.2.4; защита действует в качестве резервной (см. 3.2.15).

3.2.7. Надежность функционирования релейной защиты (срабатывание при появлении условий на срабатывание и несрабатывание при их отсутствии) должна быть обеспечена применением устройств, которые по своим параметрам и исполнению соответствуют назначению, а также надлежащим обслуживанием этих устройств.

При необходимости следует использовать специальные меры повышения надежности функционирования, в частности схемное резервирование, непрерывный или периодический контроль состояния и др. Должна также учитываться вероятность ошибочных действий обслуживающего персонала при выполнении необходимых операций с релейной защитой.

3.2.8. При наличии релейной защиты, имеющей цепи напряжения, следует предусматривать устройства:

автоматически выводящие защиту из действия при отключении автоматических выключателей, перегорании предохранителей и других нарушениях цепей напряжения (если эти нарушения могут привести к ложному срабатыванию защиты в нормальном режиме), а также сигнализирующие о нарушениях этих цепей;

сигнализирующие о нарушениях цепей напряжения, если эти нарушения не приводят к ложному срабатыванию защиты в условиях нормального режима, но могут привести к излишнему срабатыванию в других условиях (например, при КЗ вне защищаемой зоны).

3.2.9. При установке быстродействующей релейной защиты на линиях электропередачи с трубчатыми разрядниками должна быть предусмотрена отстройка ее от работы разрядников, для чего:

наименьшее время срабатывания релейной защиты до момента подачи сигнала на отключение до��жно быть больше времени однократного срабатывания разрядников, а именно около 0,06 — 0,08 с;

пусковые органы защиты, срабатывающие от импульса тока разрядников, должны иметь возможно меньшее время возврата (около 0,01 с от момента исчезновения импульса).

i-TC.ru
Left Menu Icon